Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Hum Brain Mapp ; 44(10): 3998-4010, 2023 07.
Article in English | MEDLINE | ID: covidwho-2319814

ABSTRACT

There has been growing attention on the effect of COVID-19 on white-matter microstructure, especially among those that self-isolated after being infected. There is also immense scientific interest and potential clinical utility to evaluate the sensitivity of single-shell diffusion magnetic resonance imaging (MRI) methods for detecting such effects. In this work, the performances of three single-shell-compatible diffusion MRI modeling methods are compared for detecting the effect of COVID-19, including diffusion-tensor imaging, diffusion-tensor decomposition of orthogonal moments and correlated diffusion imaging. Imaging was performed on self-isolated patients at the study initiation and 3-month follow-up, along with age- and sex-matched controls. We demonstrate through simulations and experimental data that correlated diffusion imaging is associated with far greater sensitivity, being the only one of the three single-shell methods to demonstrate COVID-19-related brain effects. Results suggest less restricted diffusion in the frontal lobe in COVID-19 patients, but also more restricted diffusion in the cerebellar white matter, in agreement with several existing studies highlighting the vulnerability of the cerebellum to COVID-19 infection. These results, taken together with the simulation results, suggest that a significant proportion of COVID-19 related white-matter microstructural pathology manifests as a change in tissue diffusivity. Interestingly, different b-values also confer different sensitivities to the effects. No significant difference was observed in patients at the 3-month follow-up, likely due to the limited size of the follow-up cohort. To summarize, correlated diffusion imaging is shown to be a viable single-shell diffusion analysis approach that allows us to uncover opposing patterns of diffusion changes in the frontal and cerebellar regions of COVID-19 patients, suggesting the two regions react differently to viral infection.


Subject(s)
COVID-19 , White Matter , Humans , Feasibility Studies , COVID-19/diagnostic imaging , Brain/diagnostic imaging , Brain/pathology , White Matter/diagnostic imaging , White Matter/pathology , Diffusion Tensor Imaging/methods , Diffusion Magnetic Resonance Imaging/methods
2.
Front Neurol ; 14: 1136408, 2023.
Article in English | MEDLINE | ID: covidwho-2293503

ABSTRACT

Introduction: The long-term impact of COVID-19 on brain function remains poorly understood, despite growing concern surrounding post-acute COVID-19 syndrome (PACS). The goal of this cross-sectional, observational study was to determine whether there are significant alterations in resting brain function among non-hospitalized individuals with PACS, compared to symptomatic individuals with non-COVID infection. Methods: Data were collected for 51 individuals who tested positive for COVID-19 (mean age 41±12 yrs., 34 female) and 15 controls who had cold and flu-like symptoms but tested negative for COVID-19 (mean age 41±14 yrs., 9 female), with both groups assessed an average of 4-5 months after COVID testing. None of the participants had prior neurologic, psychiatric, or cardiovascular illness. Resting brain function was assessed via functional magnetic resonance imaging (fMRI), and self-reported symptoms were recorded. Results: Individuals with COVID-19 had lower temporal and subcortical functional connectivity relative to controls. A greater number of ongoing post-COVID symptoms was also associated with altered functional connectivity between temporal, parietal, occipital and subcortical regions. Discussion: These results provide preliminary evidence that patterns of functional connectivity distinguish PACS from non-COVID infection and correlate with the severity of clinical outcome, providing novel insights into this highly prevalent disorder.

3.
BMC Med Inform Decis Mak ; 23(1): 34, 2023 02 14.
Article in English | MEDLINE | ID: covidwho-2287764

ABSTRACT

In recent years, relation extraction on unstructured texts has become an important task in medical research. However, relation extraction requires a large amount of labeled corpus, manually annotating sequences is time consuming and expensive. Therefore, efficient and economical methods for annotating sequences are required to ensure the performance of relational extraction. This paper proposes a method of subsequence and distant supervision based active learning. The method is annotated by selecting information-rich subsequences as a sampling unit instead of the full sentences in traditional active learning. Additionally, the method saves the labeled subsequence texts and their corresponding labels in a dictionary which is continuously updated and maintained, and pre-labels the unlabeled set through text matching based on the idea of distant supervision. Finally, the method combines a Chinese-RoBERTa-CRF model for relation extraction in Chinese medical texts. Experimental results test on the CMeIE dataset achieves the best performance compared to existing methods. And the best F1 value obtained between different sampling strategies is 55.96%.


Subject(s)
Problem-Based Learning , Supervised Machine Learning , Language , China , Reference Books, Medical
4.
Zhongguo Zhen Jiu ; 43(3): 255-60, 2023 Mar 12.
Article in Chinese | MEDLINE | ID: covidwho-2287436

ABSTRACT

OBJECTIVE: To observe the effect of Shugan Tiaoshen acupuncture (acupuncture for soothing the liver and regulating the mentality) combined with western medication on depression and sleep quality in the patients with depression-insomnia comorbidity due to COVID-19 quarantine, and investigate the potential mechanism from the perspective of cortical excitability. METHODS: Sixty patients with depression-insomnia comorbidity due to COVID-19 quarantine were randomly divided into an acupuncture group and a sham-acupuncture group, 30 cases in each one. The patients of both groups were treated with oral administration of sertraline hydrochloride tablets. In the acupuncture group, Shugan Tiaoshen acupuncture was supplemented. Body acupuncture was applied to Yintang (GV 24+), Baihui (GV 20), Hegu (LI 4), Zhaohai (KI 6), Qihai (CV 6), etc. The intradermal needling was used at Xin (CO15), Gan (CO12) and Shen (CO10). In the sham-acupuncture group, the sham-acupuncture was given at the same points as the acupuncture group. The compensatory treatment was provided at the end of follow-up for the patients in the sham-acupuncture group. In both groups, the treatment was given once every two days, 3 times a week, for consecutive 8 weeks. The self-rating depression scale (SDS) and insomnia severity index (ISI) scores were compared between the two groups before and after treatment and 1 month after the end of treatment (follow-up) separately. The cortical excitability indexes (resting motor threshold [rMT], motor evoked potential amplitude [MEP-A], cortical resting period [CSP]) and the level of serum 5-hydroxytryptamine (5-HT) were measured before and after treatment in the two groups. RESULTS: After treatment and in follow-up, SDS and ISI scores were decreased in both groups compared with those before treatment (P<0.05), and the scores in the acupuncture group were lower than those in the sham-acupuncture group (P<0.05), and the decrease range in the acupuncture group after treatment was larger than that in the sham-acupuncture group (P<0.05). After treatment, rMT was reduced (P<0.05), while MEP-A and CSP were increased (P<0.05) in the acupuncture group compared with that before treatment. The levels of serum 5-HT in both groups were increased compared with those before treatment (P<0.05). The rMT in the acupuncture group was lower than that in the sham-acupuncture group, while MEP-A and CSP, as well as the level of serum 5-HT were higher in the acupuncture group in comparison with the sham-acupuncture group (P<0.05). CONCLUSION: Shugan Tiaoshen acupuncture combined with western medication can relieve depression and improve sleep quality in the patients with depression-insomnia comorbidity due to COVID-19 quarantine, which is probably related to rectifying the imbalanced excitatory and inhibitory neuronal functions.


Subject(s)
Acupuncture Therapy , COVID-19 , Sleep Initiation and Maintenance Disorders , Humans , Depression , Quarantine , Serotonin , Comorbidity
5.
J Magn Reson Imaging ; 2022 Dec 06.
Article in English | MEDLINE | ID: covidwho-2148350

ABSTRACT

BACKGROUND: Neurological symptoms associated with coronavirus disease 2019 (COVID-19), such as fatigue and smell/taste changes, persist beyond infection. However, little is known of brain physiology in the post-COVID-19 timeframe. PURPOSE: To determine whether adults who experienced flu-like symptoms due to COVID-19 would exhibit cerebral blood flow (CBF) alterations in the weeks/months beyond infection, relative to controls who experienced flu-like symptoms but tested negative for COVID-19. STUDY TYPE: Prospective observational. POPULATION: A total of 39 adults who previously self-isolated at home due to COVID-19 (41.9 ± 12.6 years of age, 59% female, 116.5 ± 62.2 days since positive diagnosis) and 11 controls who experienced flu-like symptoms but had a negative COVID-19 diagnosis (41.5 ± 13.4 years of age, 55% female, 112.1 ± 59.5 since negative diagnosis). FIELD STRENGTH AND SEQUENCES: A 3.0 T; T1-weighted magnetization-prepared rapid gradient and echo-planar turbo gradient-spin echo arterial spin labeling sequences. ASSESSMENT: Arterial spin labeling was used to estimate CBF. A self-reported questionnaire assessed symptoms, including ongoing fatigue. CBF was compared between COVID-19 and control groups and between those with (n = 11) and without self-reported ongoing fatigue (n = 28) within the COVID-19 group. STATISTICAL TESTS: Between-group and within-group comparisons of CBF were performed in a voxel-wise manner, controlling for age and sex, at a family-wise error rate of 0.05. RESULTS: Relative to controls, the COVID-19 group exhibited significantly decreased CBF in subcortical regions including the thalamus, orbitofrontal cortex, and basal ganglia (maximum cluster size = 6012 voxels and maximum t-statistic = 5.21). Within the COVID-19 group, significant CBF differences in occipital and parietal regions were observed between those with and without self-reported on-going fatigue. DATA CONCLUSION: These cross-sectional data revealed regional CBF decreases in the COVID-19 group, suggesting the relevance of brain physiology in the post-COVID-19 timeframe. This research may help elucidate the heterogeneous symptoms of the post-COVID-19 condition. EVIDENCE LEVEL: 2. TECHNICAL EFFICACY: Stage 3.

6.
Ocean Coast Manag ; 231: 106405, 2023 Jan 01.
Article in English | MEDLINE | ID: covidwho-2105670

ABSTRACT

Maritime transport chain is facing huge information asymmetry after the outbreak of major emergencies, such as COVID-19 epidemic. The previous literature has proved that information investing and information sharing are two effective tactics to relieve information asymmetry between supply chain nodes, and help them improve the performance of the supply chain. This paper assumes random demand disruption is the main cause of the information asymmetry in a maritime transportation chain. To explore how the random demand disruption and channel competition jointly impact operational decisions in a dual-channel maritime transport chain composed of one port, two carriers and shippers, we construct a game-theoretical basic model, and proposed two strategies, i.e., information investing and information sharing. Several significant managerial insights are derived. First, we find that inaccurate disruption information leads to inaccurate decisions and huge losses; Second, investing in precise information benefits the port only if the chain members are optimistic about the market, and improves the revenue of the carrier who invested in information if the investment cost is reasonable; Third, accepting information sharing benefits the port only when the precise disruption and the distortion of information are relatively large, as well as the misappropriate rate is relatively small; and only when the port is pessimistic about the market or the channel competition is weak, sharing information may hurt the carrier who invested in information. Finally, the strength of the channel competition will enhance the impact of information inaccuracy on the maritime transport chain.

7.
Philos Trans R Soc Lond B Biol Sci ; 377(1861): 20210242, 2022 10 10.
Article in English | MEDLINE | ID: covidwho-2001544

ABSTRACT

Recent advances in Bayesian phylogenetics offer substantial computational savings to accommodate increased genomic sampling that challenges traditional inference methods. In this review, we begin with a brief summary of the Bayesian phylogenetic framework, and then conceptualize a variety of methods to improve posterior approximations via Markov chain Monte Carlo (MCMC) sampling. Specifically, we discuss methods to improve the speed of likelihood calculations, reduce MCMC burn-in, and generate better MCMC proposals. We apply several of these techniques to study the evolution of HIV virulence along a 1536-tip phylogeny and estimate the internal node heights of a 1000-tip SARS-CoV-2 phylogenetic tree in order to illustrate the speed-up of such analyses using current state-of-the-art approaches. We conclude our review with a discussion of promising alternatives to MCMC that approximate the phylogenetic posterior. This article is part of a discussion meeting issue 'Genomic population structures of microbial pathogens'.


Subject(s)
COVID-19 , Software , Algorithms , Bayes Theorem , Humans , Markov Chains , Monte Carlo Method , Phylogeny , SARS-CoV-2/genetics
8.
Nature ; 610(7930): 154-160, 2022 10.
Article in English | MEDLINE | ID: covidwho-1991629

ABSTRACT

The SARS-CoV-2 Delta (Pango lineage B.1.617.2) variant of concern spread globally, causing resurgences of COVID-19 worldwide1,2. The emergence of the Delta variant in the UK occurred on the background of a heterogeneous landscape of immunity and relaxation of non-pharmaceutical interventions. Here we analyse 52,992 SARS-CoV-2 genomes from England together with 93,649 genomes from the rest of the world to reconstruct the emergence of Delta and quantify its introduction to and regional dissemination across England in the context of changing travel and social restrictions. Using analysis of human movement, contact tracing and virus genomic data, we find that the geographic focus of the expansion of Delta shifted from India to a more global pattern in early May 2021. In England, Delta lineages were introduced more than 1,000 times and spread nationally as non-pharmaceutical interventions were relaxed. We find that hotel quarantine for travellers reduced onward transmission from importations; however, the transmission chains that later dominated the Delta wave in England were seeded before travel restrictions were introduced. Increasing inter-regional travel within England drove the nationwide dissemination of Delta, with some cities receiving more than 2,000 observable lineage introductions from elsewhere. Subsequently, increased levels of local population mixing-and not the number of importations-were associated with the faster relative spread of Delta. The invasion dynamics of Delta depended on spatial heterogeneity in contact patterns, and our findings will inform optimal spatial interventions to reduce the transmission of current and future variants of concern, such as Omicron (Pango lineage B.1.1.529).


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , COVID-19/virology , Cities/epidemiology , Contact Tracing , England/epidemiology , Genome, Viral/genetics , Humans , Quarantine/legislation & jurisprudence , SARS-CoV-2/genetics , SARS-CoV-2/growth & development , SARS-CoV-2/isolation & purification , Travel/legislation & jurisprudence
9.
J Hazard Mater ; 439: 129697, 2022 10 05.
Article in English | MEDLINE | ID: covidwho-1966844

ABSTRACT

Converging evidence reports that the probability of vertical transmission patterns via shared drainage systems, may be responsible for the huge contactless community outbreak in high-rise buildings. Publications indicate that a faulty bathroom exhaust fan system is ineffective in removing lifted hazardous virus-laden aerosols from the toilet bowl space. Common strategies (boosting ventilation capability and applying disinfection tablets) seem unsustainable and remain to date untested. Using combined simulation and experimental approaches, we compared three ventilation schemes in a family bathroom including the traditional ceiling fan, floor fan, and side-wall fan. We found that the traditional ceiling fan was barely functional whereby aerosol particles were not being adequately removed. Conversely, a side-wall fan could function efficiently and an enhanced ventilation capability can have increased performance whereby nearly 80.9% of the lifted aerosol particles were removed. There exists a common, and easily-overlooked mistake in the layout of the bathroom, exposing occupants to a contactless vertical pathogen aerosol transmission route. Corrections and dissemination are thus imperative for the reconstruction of these types of family bathrooms. Our findings provide evidence for the bathroom and smart ventilation system upgrade, promoting indoor public health and human hygiene.


Subject(s)
COVID-19 , Toilet Facilities , COVID-19/prevention & control , Computer Simulation , Humans , Respiratory Aerosols and Droplets , Ventilation
10.
Frontiers in pharmacology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1876649

ABSTRACT

Acute lung injury (ALI) or its aggravated stage acute respiratory distress syndrome (ARDS) is a common severe clinical syndrome in intensive care unit, may lead to a life-threatening form of respiratory failure, resulting in high mortality up to 30–40% in most studies. Nanotechnology-mediated anti-inflammatory therapy is an emerging novel strategy for the treatment of ALI, has been demonstrated with unique advantages in solving the dilemma of ALI drug therapy. Artesunate (ART), a derivative of artemisinin, has been reported to have anti-inflammatory effects. Therefore, in the present study, we designed and synthesized PEGylated ART prodrugs and assessed whether ART prodrugs could attenuate lipopolysaccharide (LPS) induced ALI in vitro and in vivo. All treatment groups were conditioned with ART prodrugs 1 h before challenge with LPS. Significant increased inflammatory cytokines production and decreased GSH levels were observed in the LPS stimulated mouse macrophage cell line RAW264.7. Lung histopathological changes, lung W/D ratio, MPO activity and total neutrophil counts were increased in the LPS-induced murine model of ALI via nasal administration. However, these results can be reversed to some extent by treatment of ART prodrugs. The effectiveness of mPEG2k-SS-ART in inhibition of ALI induced by LPS was confirmed. In conclusion, our results demonstrated that the ART prodrugs could attenuate LPS-induced ALI effectively, and mPEG2k-SS-ART may serve as a novel strategy for treatment of inflammation induced lung injury.

11.
Cell Rep ; 39(11): 110969, 2022 06 14.
Article in English | MEDLINE | ID: covidwho-1866960

ABSTRACT

Emerging infectious diseases, especially if caused by bat-borne viruses, significantly affect public health and the global economy. There is an urgent need to understand the mechanism of interspecies transmission, particularly to humans. Viral genetics; host factors, including polymorphisms in the receptors; and ecological, environmental, and population dynamics are major parameters to consider. Here, we describe the taxonomy, geographic distribution, and unique traits of bats associated with their importance as virus reservoirs. Then, we summarize the origin, intermediate hosts, and the current understanding of interspecies transmission of Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2, Nipah, Hendra, Ebola, Marburg virus, and rotaviruses. Finally, the molecular interactions of viral surface proteins with host cell receptors are examined, and a comparison of these interactions in humans, intermediate hosts, and bats is conducted. This uncovers adaptive mutations in virus spike protein that facilitate cross-species transmission and risk factors associated with the emergence of novel viruses from bats.


Subject(s)
COVID-19 , Chiroptera , Filoviridae , Henipavirus , Rotavirus , Viruses , Animals , Filoviridae/genetics , Humans , Rotavirus/genetics , SARS-CoV-2/genetics
12.
BMC Cardiovasc Disord ; 22(1): 194, 2022 04 26.
Article in English | MEDLINE | ID: covidwho-1817181

ABSTRACT

BACKGROUND: COVID-19 affects healthcare resource allocation, which could lead to treatment delay and poor outcomes in patients with acute myocardial infarction (AMI). We assessed the impact of the COVID-19 pandemic on AMI outcomes. METHODS: We compared outcomes of patients admitted for acute ST-elevation MI (STEMI) and non-STEMI (NSTEMI) during a non-COVID-19 pandemic period (January-February 2019; Group 1, n = 254) and a COVID-19 pandemic period (January-February 2020; Group 2, n = 124). RESULTS: For STEMI patients, the median of first medical contact (FMC) time, door-to-balloon time, and total myocardial ischemia time were significantly longer in Group 2 patients (all p < 0.05). Primary percutaneous intervention was performed significantly more often in Group 1 patients than in Group 2 patients, whereas thrombolytic therapy was used significantly more often in Group 2 patients than in Group 1 patients (all p < 0.05). However, the rates of and all-cause 30-day mortality and major adverse cardiac event (MACE) were not significantly different in the two periods (all p > 0.05). For NSTEMI patients, Group 2 patients had a higher rate of conservative therapy, a lower rate of reperfusion therapy, and longer FMC times (all p < 0.05). All-cause 30-day mortality and MACE were only higher in NSTEMI patients during the COVID-19 pandemic period (p < 0.001). CONCLUSIONS: COVID-19 pandemic causes treatment delay in AMI patients and potentially leads to poor clinical outcome in NSTEMI patients. Thrombolytic therapy should be initiated without delay for STEMI when coronary intervention is not readily available; for NSTEMI patients, outcomes of invasive reperfusion were better than medical treatment.


Subject(s)
COVID-19 , Myocardial Infarction , Non-ST Elevated Myocardial Infarction , ST Elevation Myocardial Infarction , Humans , Myocardial Infarction/diagnosis , Myocardial Infarction/epidemiology , Myocardial Infarction/therapy , Non-ST Elevated Myocardial Infarction/diagnosis , Non-ST Elevated Myocardial Infarction/therapy , Pandemics , ST Elevation Myocardial Infarction/diagnosis , ST Elevation Myocardial Infarction/epidemiology , ST Elevation Myocardial Infarction/therapy , Time Factors , Treatment Outcome
13.
Cell ; 185(7): 1117-1129.e8, 2022 03 31.
Article in English | MEDLINE | ID: covidwho-1682965

ABSTRACT

Game animals are wildlife species traded and consumed as food and are potential reservoirs for SARS-CoV and SARS-CoV-2. We performed a meta-transcriptomic analysis of 1,941 game animals, representing 18 species and five mammalian orders, sampled across China. From this, we identified 102 mammalian-infecting viruses, with 65 described for the first time. Twenty-one viruses were considered as potentially high risk to humans and domestic animals. Civets (Paguma larvata) carried the highest number of potentially high-risk viruses. We inferred the transmission of bat-associated coronavirus from bats to civets, as well as cross-species jumps of coronaviruses from bats to hedgehogs, from birds to porcupines, and from dogs to raccoon dogs. Of note, we identified avian Influenza A virus H9N2 in civets and Asian badgers, with the latter displaying respiratory symptoms, as well as cases of likely human-to-wildlife virus transmission. These data highlight the importance of game animals as potential drivers of disease emergence.


Subject(s)
Animals, Wild/virology , Communicable Diseases, Emerging/virology , Disease Reservoirs , Mammals/virology , Virome , Animals , China , Phylogeny , Zoonoses
14.
Sustain Cities Soc ; 80: 103753, 2022 May.
Article in English | MEDLINE | ID: covidwho-1665461

ABSTRACT

Indoor transmission of COVID-19 is highly probable. Multiple sources have verified that the SARS-CoV-2 can be detected within toilets, and people can be infected in restrooms. There is a huge gap in the coronavirus transmission mechanism in restrooms. Understanding it can help to flatten the curve of the infected cases as well as prevent other viruses transmitted through the sewage or human body fluid. Previous studies have shown how simple actions in daily life (coughing, sneezing, or toilet flushing) contribute to virus transmission. This paper visually and quantitatively demonstrates that male urination, which is also a daily action, can agitate virus particles within the toilet and raise them, which may be the main promoter of cross-infection of COVID-19 in restrooms. Adopting numerical and experimental methods, we demonstrate that male urination can cause strong turbulent flow with an averaged urine impinging velocity of 2.3 m/s, which can act as an agitator to raise the virus particles. The climbing velocity of the airflow can be 0.75-1.05 m/s. The observed upwards flow will disturb and spread any lurking virus particles (not limited to SARS-CoV-2). Experiments demonstrated that the concentration of the airborne particle could be tripled during male urination. Corresponding precautions are offered as well to prepare the public to act properly when and after using facilities in restrooms for preventing emerging and re-emerging pandemics not limited to the current COVID-19, contributing to the sustainability of human society.

15.
Mol Biol Evol ; 39(2)2022 02 03.
Article in English | MEDLINE | ID: covidwho-1594013

ABSTRACT

The ongoing SARS (severe acute respiratory syndrome)-CoV (coronavirus)-2 pandemic has exposed major gaps in our knowledge on the origin, ecology, evolution, and spread of animal coronaviruses. Porcine epidemic diarrhea virus (PEDV) is a member of the genus Alphacoronavirus in the family Coronaviridae that may have originated from bats and leads to significant hazards and widespread epidemics in the swine population. The role of local and global trade of live swine and swine-related products in disseminating PEDV remains unclear, especially in developing countries with complex swine production systems. Here, we undertake an in-depth phylogeographic analysis of PEDV sequence data (including 247 newly sequenced samples) and employ an extension of this inference framework that enables formally testing the contribution of a range of predictor variables to the geographic spread of PEDV. Within China, the provinces of Guangdong and Henan were identified as primary hubs for the spread of PEDV, for which we estimate live swine trade to play a very important role. On a global scale, the United States and China maintain the highest number of PEDV lineages. We estimate that, after an initial introduction out of China, the United States acted as an important source of PEDV introductions into Japan, Korea, China, and Mexico. Live swine trade also explains the dispersal of PEDV on a global scale. Given the increasingly global trade of live swine, our findings have important implications for designing prevention and containment measures to combat a wide range of livestock coronaviruses.


Subject(s)
Coronavirus , Porcine epidemic diarrhea virus , Swine Diseases , Animals , China , Pandemics , Phylogeny , Phylogeography , Porcine epidemic diarrhea virus/genetics , Swine , Swine Diseases/epidemiology , United States
16.
CMAJ Open ; 9(4): E1114-E1119, 2021.
Article in English | MEDLINE | ID: covidwho-1547694

ABSTRACT

BACKGROUND: The detailed extent of neuroinvasion or deleterious brain changes resulting from COVID-19 and their time courses remain to be determined in relation to "long-haul" COVID-19 symptoms. Our objective is to determine whether there are alterations in functional brain imaging measures among people with COVID-19 after hospital discharge or self-isolation. METHODS: This paper describes a protocol for NeuroCOVID-19, a longitudinal observational study of adults aged 20-75 years at Sunnybrook Health Sciences Centre in Toronto, Ontario, that began in April 2020. We aim to recruit 240 adults, 60 per group: people who contracted COVID-19 and were admitted to hospital (group 1), people who contracted COVID-19 and self-isolated (group 2), people who experienced influenza-like symptoms at acute presentation but tested negative for COVID-19 and self-isolated (group 3, control) and healthy people (group 4, control). Participants are excluded based on premorbid neurologic or severe psychiatric illness, unstable cardiovascular disease, and magnetic resonance imaging (MRI) contraindications. Initial and 3-month follow-up assessments include multiparametric brain MRI and electroencephalography. Sensation and cognition are assessed alongside neuropsychiatric assessments and symptom self-reports. We will test the data from the initial and follow-up assessments for group differences based on 3 outcome measures: MRI cerebral blood flow, MRI resting state fractional amplitude of low-frequency fluctuation and electroencephalography spectral power. INTERPRETATION: If neurophysiologic alterations are detected in the COVID-19 groups in our NeuroCOVID-19 study, this information could inform future research regarding interventions for long-haul COVID-19. The study results will be disseminated to scientists, clinicians and COVID-19 survivors, as well as the public and private sectors to provide context on how brain measures relate to lingering symptoms.


Subject(s)
Brain/physiopathology , COVID-19/complications , Patient Discharge , Adult , Aged , Brain/diagnostic imaging , COVID-19/diagnostic imaging , COVID-19/physiopathology , Electroencephalography/methods , Female , Hospitalization , Hospitals , Humans , Longitudinal Studies , Magnetic Resonance Imaging/methods , Male , Middle Aged , Ontario , Patient Isolation/methods , SARS-CoV-2 , Young Adult , Post-Acute COVID-19 Syndrome
17.
Nature ; 595(7869): 713-717, 2021 07.
Article in English | MEDLINE | ID: covidwho-1287812

ABSTRACT

After the first wave of SARS-CoV-2 infections in spring 2020, Europe experienced a resurgence of the virus starting in late summer 2020 that was deadlier and more difficult to contain1. Relaxed intervention measures and summer travel have been implicated as drivers of the second wave2. Here we build a phylogeographical model to evaluate how newly introduced lineages, as opposed to the rekindling of persistent lineages, contributed to the resurgence of COVID-19 in Europe. We inform this model using genomic, mobility and epidemiological data from 10 European countries and estimate that in many countries more than half of the lineages circulating in late summer resulted from new introductions since 15 June 2020. The success in onward transmission of newly introduced lineages was negatively associated with the local incidence of COVID-19 during this period. The pervasive spread of variants in summer 2020 highlights the threat of viral dissemination when restrictions are lifted, and this needs to be carefully considered in strategies to control the current spread of variants that are more transmissible and/or evade immunity. Our findings indicate that more effective and coordinated measures are required to contain the spread through cross-border travel even as vaccination is reducing disease burden.


Subject(s)
COVID-19/transmission , COVID-19/virology , SARS-CoV-2/isolation & purification , COVID-19/epidemiology , COVID-19/prevention & control , Europe/epidemiology , Genome, Viral/genetics , Humans , Incidence , Locomotion , Phylogeny , Phylogeography , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Time Factors , Travel/statistics & numerical data
18.
PLoS One ; 16(5): e0251242, 2021.
Article in English | MEDLINE | ID: covidwho-1236586

ABSTRACT

The SARS-CoV-2 pandemic led to closure of nearly all K-12 schools in the United States of America in March 2020. Although reopening K-12 schools for in-person schooling is desirable for many reasons, officials understand that risk reduction strategies and detection of cases are imperative in creating a safe return to school. Furthermore, consequences of reclosing recently opened schools are substantial and impact teachers, parents, and ultimately educational experiences in children. To address competing interests in meeting educational needs with public safety, we compare the impact of physical separation through school cohorts on SARS-CoV-2 infections against policies acting at the level of individual contacts within classrooms. Using an age-stratified Susceptible-Exposed-Infected-Removed model, we explore influences of reduced class density, transmission mitigation, and viral detection on cumulative prevalence. We consider several scenarios over a 6-month period including (1) multiple rotating cohorts in which students cycle through in-person instruction on a weekly basis, (2) parallel cohorts with in-person and remote learning tracks, (3) the impact of a hypothetical testing program with ideal and imperfect detection, and (4) varying levels of aggregate transmission reduction. Our mathematical model predicts that reducing the number of contacts through cohorts produces a larger effect than diminishing transmission rates per contact. Specifically, the latter approach requires dramatic reduction in transmission rates in order to achieve a comparable effect in minimizing infections over time. Further, our model indicates that surveillance programs using less sensitive tests may be adequate in monitoring infections within a school community by both keeping infections low and allowing for a longer period of instruction. Lastly, we underscore the importance of factoring infection prevalence in deciding when a local outbreak of infection is serious enough to require reverting to remote learning.


Subject(s)
COVID-19/transmission , Contact Tracing/methods , Pandemics , Population Surveillance/methods , Schools , Adolescent , Child , Humans , Models, Theoretical , United States
19.
Eur Radiol ; 31(10): 7342-7352, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1184662

ABSTRACT

OBJECTIVES: To investigate the association between longitudinal total pulmonary infection volume and volume ratio over time and clinical types in COVID-19 pneumonia patients. METHODS: This retrospective review included 367 patients with COVID-19 pneumonia. All patients underwent CT examination at baseline and/or one or more follow-up CT. Patients were categorized into two clinical types (moderate and severe groups). The severe patients were matched to the moderate patients via propensity scores (PS). The association between total pulmonary infection volume and volume ratio and clinical types was analyzed using a generalized additive mixed model (GAMM). RESULTS: Two hundred and seven moderate patients and 160 severe patients were enrolled. The baseline clinical and imaging variables were balanced using PS analysis to avoid patient selection bias. After PS analysis, 172 pairs of moderate patients were allocated to the groups; there was no difference in the clinical and CT characteristics between the two groups (p > 0.05). A total of 332 patients, including 396 CT scans, were assessed. The impact of total pulmonary infection volume and volume ratio with time was significantly affected by clinical types (p for interaction = 0.01 and 0.01, respectively) using GAMM. Total pulmonary infection volume and volume ratio of the severe group increased by 14.66 cm3 (95% confidence interval [CI]: 3.92 to 25.40) and 0.45% (95% CI: 0.13 to 0.77) every day, respectively, compared to that of the moderate group. CONCLUSIONS: Longitudinal total pulmonary infection volume and volume ratio are independently associated with the clinical types of COVID-19 pneumonia. KEY POINTS: • The impact of total pulmonary infection volume and volume ratio over time was significantly affected by the clinical types (p for interaction = 0.01 and 0.01, respectively) using the GAMM. • Total pulmonary infection volume and volume ratio of the severe group increased by 14.66 cm3 (95% CI: 3.92 to 25.40) and 0.45% (95% CI: 0.13 to 0.77) every day, respectively, compared to that of the moderate group.


Subject(s)
COVID-19 , Pneumonia , Humans , Lung/diagnostic imaging , Propensity Score , Retrospective Studies , SARS-CoV-2
20.
Nat Commun ; 12(1): 814, 2021 02 05.
Article in English | MEDLINE | ID: covidwho-1065864

ABSTRACT

On the basis of Covid-19-induced pulmonary pathological and vascular changes, we hypothesize that the anti-vascular endothelial growth factor (VEGF) drug bevacizumab might be beneficial for treating Covid-19 patients. From Feb 15 to April 5, 2020, we conducted a single-arm trial (NCT04275414) and recruited 26 patients from 2-centers (China and Italy) with severe Covid-19, with respiratory rate ≥30 times/min, oxygen saturation ≤93% with ambient air, or partial arterial oxygen pressure to fraction of inspiration O2 ratio (PaO2/FiO2) >100 mmHg and ≤300 mmHg, and diffuse pneumonia confirmed by chest imaging. Followed up for 28 days. Among these, bevacizumab plus standard care markedly improves the PaO2/FiO2 ratios at days 1 and 7. By day 28, 24 (92%) patients show improvement in oxygen-support status, 17 (65%) patients are discharged, and none show worsen oxygen-support status nor die. Significant reduction of lesion areas/ratios are shown in chest computed tomography (CT) or X-ray within 7 days. Of 14 patients with fever, body temperature normalizes within 72 h in 13 (93%) patients. Relative to comparable controls, bevacizumab shows clinical efficacy by improving oxygenation and shortening oxygen-support duration. Our findings suggest bevacizumab plus standard care is highly beneficial for patients with severe Covid-19. Randomized controlled trial is warranted.


Subject(s)
Bevacizumab/therapeutic use , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Aged , Angiogenesis Inhibitors/therapeutic use , Body Temperature/drug effects , COVID-19/virology , China , Female , Fever/prevention & control , Humans , Italy , Male , Middle Aged , SARS-CoV-2/physiology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL